skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Krachmalnicoff, Nicoletta"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract Observing in six frequency bands from 27 to 280 GHz over a large sky area, the Simons Observatory (SO) is poised to address many questions in Galactic astrophysics in addition to its principal cosmological goals. In this work, we provide quantitative forecasts on astrophysical parameters of interest for a range of Galactic science cases. We find that SO can: constrain the frequency spectrum of polarized dust emission at a level of Δβd≲ 0.01 and thus test models of dust composition that predict thatβdin polarization differs from that measured in total intensity; measure the correlation coefficient between polarized dust and synchrotron emission with a factor of two greater precision than current constraints; exclude the nonexistence of exo-Oort clouds at roughly 2.9σif the true fraction is similar to the detection rate of giant planets; map more than 850 molecular clouds with at least 50 independent polarization measurements at 1 pc resolution; detect or place upper limits on the polarization fractions of CO(2–1) emission and anomalous microwave emission at the 0.1% level in select regions; and measure the correlation coefficient between optical starlight polarization and microwave polarized dust emission in 1° patches for all lines of sight withNH≳ 2 × 1020cm−2. The goals and forecasts outlined here provide a roadmap for other microwave polarization experiments to expand their scientific scope via Milky Way astrophysics.3737A supplement describing author contributions to this paper can be found athttps://simonsobservatory.org/wp-content/uploads/2022/02/SO_GS_Contributions.pdf. 
    more » « less